

Appendix C
Writing Specialized Queries

Contents:
Lesson 1: Working with Full-Text Data C-3

Lesson 2: Querying Full-Text Data C-6

Lesson 3: Working with XML Data C-12

Lesson 4: Converting Query Results to XML with FOR XML C-17

Lesson 5: Querying XML Data C-33

Lab: Writing Specialized Queries C-42

www.firebrandtraining.com

www.firebrandtraining.com

Module Overview

In this course, you have learned to write T-SQL queries against data stored in character, numeric, date,

and time data types. Microsoft® SQL Server® also supports more specialized mechanisms for querying

character data and includes additional data types, such as XML, that require other methods for querying

them. In this module, you will learn how to use full-text querying when it is available in your databases

and XML methods for working with XML data.

Objectives

After completing this module, you will be able to:

• Use full-text predicates in queries against databases enabled for full-text search.

• Write queries to retrieve tabular data and convert it to XML.

• Write queries that manipulate data stored in SQL Server's native XML data type.

Lesson 1

Working with Full-Text Data

In this lesson, you will learn the background for querying with full-text search, including the benefits of

full-text predicates compared to the LIKE predicate. You will also learn about what needs to be installed

and configured on SQL Server to make full-text search available to your queries.

Lesson Objectives

After completing this lesson, you will be able to:

• Describe the benefits of full-text search compared to the T-SQL LIKE predicate.

• Describe the administrative tasks necessary to support full-text search.

The Need for Full-Text Querying

To better understand why full-text search is an attractive option for querying text stored in SQL Server,

it might be useful to compare it to the alternative: the LIKE predicate you learned about earlier in this

course. As you may recall, LIKE can be used to perform pattern matching in character columns. When

used with wildcards (%) and pattern expressions, it can be very flexible in finding matching text.

However, LIKE has two major shortcomings:

• LIKE matches strings at the character level, not the word level, and therefore cannot be used to find

variations on a word. For example, a query ending in WHERE productname LIKE '%race%'; can find

products with "race" in their name, such as "racer" or "raced", but not "racing".

• If the LIKE predicate uses a wildcard as the leading character, SQL Server is unable to search an index

on the column to improve the performance of the query. As a data volume grows, the penalty for

scanning an entire table grows with it.

SQL Server full-text search (which is sometimes referred to as iFTS) is designed to address both issues. By

extracting words from the source columns and creating special indexes, it can more quickly locate rows

with words matching the search expression. And by treating words as words and not just strings of

characters, SQL Server full-text search provides additional capabilities:

• The ability to find rows with forms of words, such as inflections or synonyms.

• The ability to find and rank rows based on the proximity of search terms to each other.

• The ability to use leading wildcards to identify prefixes, without the penalty LIKE suffers.

• The ability to assign relative weights to key words and rank rows based on the total weight.

• The ability to customize lists of "noise" words that should be ignored when indexing.

Note This module will cover how to search for word forms (inflections) and find words

near each other (proximity). Searching with prefixes, assigning weights, and ranking results

are beyond the scope of this course.

SQL Server Full-Text Search Prerequisites

In order to take advantage of full-text search in SQL Server queries, several prerequisite steps must be

completed by a database administrator. While the details of these steps are beyond the scope of this class,

they are presented here at a high level for your understanding. To use full-text options in queries,

database administrators must:

1. Install full-text search at the instance level. Full-text search is an optional component of SQL

Server and must be installed on the instance to be used. This can be done when the SQL Server

database engine is initially installed, or it can be added later through the SQL Server Installation

Center.

2. Create a full-text catalog in the user database. One or more catalogs may be created in a user

database to support full-text search. The catalog logically contains the full-text indexes and other

system objects used by full-text search.

3. Create one or more full-text indexes. Full-text indexes contain information about the location of

indexed words and related primary keys within the indexed data.

4. Identify and include tables and columns in a full-text index. Supported data types include

character, Unicode, XML, and other large object (LOB) columns.

5. Populate the index. Administrators can choose among a number of automatic, scheduled, and

manual methods for full-text search to crawl and index the words in your tables.

Only after these prerequisites are met will you have access to full-text data in your queries.

Note For more information on the setup and administration of full-text search in

SQL Server, see Microsoft Course 10776: Developing Microsoft® SQL Server® 2012

Databases. See also Books Online at http://msdn.microsoft.com/en-us/library

/ms142497(v=SQL.110).aspx.

http://msdn.microsoft.com/en-us/library

Lesson 2

Querying Full-Text Data

In this lesson, you will learn the fundamentals of writing full-text queries in SQL Server 2012. SQL Server

full-text search provides several predicates and functions for use in queries: CONTAINS, CONTAINSTABLE,

FREETEXT, and FREETEXTTABLE. In this lesson, you will learn how to use the CONTAINS and FREETEXT

predicates in the WHERE clause of T-SQL SELECT statements.

Lesson Objectives

After completing this lesson, you will be able to:

• Use the CONTAINS predicate to match words in full-text queries.

• Use the FREETEXT predicate to match meanings in full-text queries.

Writing Queries with CONTAINS

The SQL Server full-text search predicate CONTAINS extends the WHERE clause of your T-SQL queries,

invoking the full-text search engine and returning rows that match your search phrase. CONTAINS returns

exact or literal matches at the word level, not the character level, in contrast to the LIKE predicate.

CONTAINS provides powerful capabilities for matching:

• A word or phrase in an indexed column, including Boolean operators

• A word based on proximity to another word

• Inflections, or word-stemming forms, of a word

• Synonyms and replacements for a word

• Prefix searches similar to a leading wildcard using LIKE

Basic CONTAINS syntax:

WHERE CONTAINS(<column(s)>, '<search_term_in_single_quotes>')

CONTAINS syntax with search phrase:

WHERE CONTAINS(<column(s)>, '<word1> <word2>')

CONTAINS syntax with proximity:

WHERE CONTAINS(<column(s)>, '<word1> NEAR <word2>')

Note Proximity searches can also include ranking values to indicate relative proximity. The

CONTAINSTABLE predicate is used for this. For more information on CONTAINSTABLE, see

Books Online at http://msdn.microsoft.com/en-us/library/ms189760(v=SQL.110).aspx.

http://msdn.microsoft.com/en-us/library/ms189760(v%3DSQL.110).aspx

CONTAINS syntax with word-stemming:

WHERE CONTAINS(<column(s)>, 'FORMSOF(INFLECTIONAL,<word>')

Note CONTAINS also provides advanced features such as term weighting, synonym, and

expansion, which are beyond the scope of this course. For more information, see Microsoft

Course 10776A: Developing Microsoft® SQL Server® 2012 Databases. See also "Supported

Forms of Query Terms (Full-Text Search)" in Books Online at http://msdn.microsoft.com/en-

us/library/cc879300(v=SQL.110).aspx.

http://msdn.microsoft.com/en-
http://msdn.microsoft.com/en-

Writing Queries with FREETEXT

The SQL Server full-text search predicate FREETEXT extends the WHERE clause of your T-SQL queries,

invoking the full-text search engine and returning rows that match your search phrase. Unlike CONTAINS,

FREETEXT returns expanded matches at the word level, not only exact matches. FREETEXT will break apart a

phrase and search for each term separately, unlike CONTAINS.

FREETEXT provides many capabilities for matching, including:

• A word or phrase in an indexed column, including Boolean operators

• Conjugations of nouns, including plurals, gender, and case

• Conjugations of verbs, including tenses

• Synonyms and replacements for a word

• Fuzzy matching of phrases, compared to exact matches in CONTAINS

Note FREETEXT does not provide proximity searching using NEAR or inflections with

FORMSOF. CONTAINS provides this capability.

Basic FREETEXT syntax:

WHERE FREETEXT(<column(s)>, '<search_term_in_single_quotes>')

FREETEXT will return all forms of the search term, per the rules of the language settings in the database.

For example, a search for "race" will return "race", "races", "racing", "raced", and other forms.

FREETEXT syntax with search phrase:

WHERE FREETEXT (<column(s)>, '<word1> <word2>')

With a search phrase, FREETEXT will return instances of each word as well as inexact matches for the

phrase itself. A search for "road racing" will return "road", "roads", "race", "racing", "road racing", "racing

on roads", and other variations.

Note FREETEXT does not rank results. You may wish to explore the FREETEXTTABLE

function, which provides ranking. FREETEXTTABLE is beyond the scope of this class. For

more information, see Books Online at http://msdn.microsoft.com/en-

us/library/ms177652(v=SQL.110).aspx.

http://msdn.microsoft.com/en-
http://msdn.microsoft.com/en-

Demonstration: Querying Full-Text Data

Demonstration Steps

1. On the virtual machine, click Start, click All Programs, click Microsoft SQL Server 2012, and click

SQL Server Management Studio. In the Connect to Server window, type Proseware in the Server

name text box and click Connect. On the File menu, click Open and click Project/Solution.

Navigate to F:\10774A_Labs\10774A_AC_PRJ\10774A_AC_PRJ.ssmssln and click Open.

2. On the View menu, click Solution Explorer.

3. Open the 11 – Demonstration A.sql script file.

4. Follow the instructions contained within the comments of the script file.

Lesson 3

Working with XML Data

In this lesson, you will learn the fundamentals of XML support in SQL Server, including the basic

components and terminology of XML. You will also see some of the uses for XML in SQL Server 2012.

Lesson Objectives

After completing this lesson, you will be able to:

• Describe the eXtensible Markup Language (XML).

• Describe the basic components of XML.

• Describe the uses of XML in SQL Server.

What Is XML?

XML is a text format for describing and storing data. An industry standard adopted by Microsoft for many

products including SQL Server, XML is designed to be vendor-neutral, operating-system-neutral,

language-neutral, and accessible to any tool that can work with Unicode text. You may have previously

worked with other markup languages, such as Hypertext Markup Language (HTML), which describes the

formatting and layout of data on a web page. HTML includes a set of predefined tags for this purpose.

However, XML is designed to provide meaning about the data itself through a syntax similar to HTML’s

“tags”, or elements. Unlike HTML, XML includes very few predefined elements.

The specification for XML includes several basic syntax requirements you will need to observe in your

SQL Server XML queries. These can be expressed as levels of parsing:

• Well-formed XML, which requires case-sensitivity, properly nested elements, and a single root

element that contains all the other elements.

• Valid XML, which requires that the XML be well-formed and that it conform to an XML Schema

document. (In SQL Server, XML Schemas may be stored in a database as XML Schema Collections or

included inline in an XML document.)

Note For the purposes of this course, you will only work with well-formed XML. You can

work with XML Schemas in Microsoft Course 10776A: Developing a Microsoft® SQL Server®

2012 Database.

Components of XML

There are a few basic components of XML that you will work with in SQL Server:

XML Component Description

Processing Instruction

Also called a prolog, this section is marked by <?> tags and contains
information for the XML parser.

Namespace Collection of names used in the body of the XML document, expressed as a
Uniform Resource Identifier (URI). Used to distinguish between duplicate
and potentially ambiguous element and attribute names. Use of
namespaces required in XQuery expressions.

Element

The basic building block of XML, an object delimited with <> brackets
forming start and end tags with information between.

Attribute An optional method for expressing an element as a name-value pair,
delimited with quotation marks.

Schema A specification, in XML form, of the structure of an XML document. XML
Schemas are beyond the scope of this course.

Note Not all of these components will be present in all of your work with XML in SQL

Server. For example, the FOR XML clause does not generate a prolog, which may cause

errors with some XML parsers.

The following sample XML includes a section for a processing instruction, nested elements, and the use of

attributes to represent an order ID number. Note that all the line breaks, indentations, and white space

have been added for readability, but are not required by an XML parser:

<?xml version="1.0" encoding="utf-8"?>

<Orders>

<Order OrderID="10248">

<CustID>85</CustID>

<OrdDate>2006-07-04</OrdDate>

</Order>

<Order OrderID="10249">

<CustID>79</CustID>

<OrdDate>2006-07-05</OrdDate>

</Order>

</Orders>

 For More Information The complete XML specification can be found at

http://www.w3c.org.

http://www.w3c.org/
http://www.w3c.org/

SQL Server Support for XML

In this course, you will encounter XML in two main contexts: as a data format that your queries return and

as a data type in columns that you will directly query. Additionally, XML has a number of uses in aspects

of SQL Server:

• As a native data type, XML can be used for variables and stored procedure parameters as well as for

storage in columns. The XML data type also provides support for indexes and type validation through

schemas.

• XML may be decomposed or "shredded" into individual components, and then manipulated as

expressions, stored in tables, etc.

• As an output format for execution plans.

• As the output format of SQL Server system functions, such as the EVENT_DATA returned by some

triggers, event notifications, and extended events.

• As the storage format of a number of SQL Server technologies, such as Reporting Services report

definitions and XMLA scripts in Analysis Services.

• As an input format for data converted to other data types via the OPENXML function.

As a result of the spread of XML throughout the SQL Server ecosystem, it will be useful for all database

professionals to learn to work with XML.

Lesson 4

Converting Query Results to XML with FOR XML

In this lesson, you will learn how to convert the output of relational queries into an XML result.

Lesson Objectives

After completing this lesson, you will be able to:

• Write queries that retrieve tabular data and return it as XML.

• Describe the differences between FOR XML clauses using the RAW, AUTO, and PATH options.

• Choose the proper FOR XML options to represent data as elements or attributes.

• Handle NULLs in XML output.

Using FOR XML in a SELECT Statement

In the SELECT statements you have written so far in this course, the results have been returned in a tabular

format. FOR XML is an extension to the T-SQL SELECT syntax that converts the tabular output of a SELECT

statement into a stream of XML. This will allow client applications that need data in an XML format to

receive it without further conversion needed.

Note As previously mentioned, the FOR XML clause does not generate a prolog (processor

instructions), that many XML parsers, such as the one used by Internet Explorer, require.

Some further modification of the XML will be necessary to create well-formed XML. The

XML parser used by SQL Server Management Studio (SSMS) will accept XML without a

prolog, but will mark the XML with syntax errors.

To use a FOR XML clause, add it to the end of a SELECT statement, along with one of its options: RAW,

AUTO, PATH, or EXPLICIT. You can add further options to control the format and representation of the

data in XML.

Basic syntax of the FOR XML clause:

SELECT <select_list>

FROM <table_source>

FOR XML RAW [('ElementName')] |

AUTO , ELEMENTS [XSINIL] |

PATH [('ElementName')] [, ELEMENTS [XSINIL][, ROOT [('RootName')]];

In this lesson, you will see the use of the RAW, AUTO, and PATH modes, as well as the use of XSINIL,

ROOT, and ELEMENTS. (EXPLICIT mode is beyond the scope of this course.)

 For More Information See "Use FOR XML and OPENXML to Publish and

Process XML Data" in Books Online at http://msdn.microsoft.com/en-us/library

/ms191268(v=SQL.110).aspx and "FOR XML (SQL Server)" at http://msdn.microsoft.com

/en-us/library/ms178107(v=SQL.110).aspx.

Question: What applications in your environment cannot query SQL Server but can read

XML directly?

http://msdn.microsoft.com/en-us/library
http://msdn.microsoft.com/

Using FOR XML RAW

The RAW mode of FOR XML provides conversion from tabular data to XML. By default, each row in the

source is returned as an element named <row>. No root element is created, and each column value is

represented as an attribute. The results are not well-formed.

The following example shows the minimal conversion that the RAW mode returns, using default options:

SELECT TOP(5) orderid, custid, shipcountry

FROM Sales.Orders

FOR XML RAW;

Returns:

<row orderid="10248" custid="85" shipcountry="France" />

<row orderid="10249" custid="79" shipcountry="Germany" />

<row orderid="10250" custid="34" shipcountry="Brazil" />

<row orderid="10251" custid="84" shipcountry="France" />

<row orderid="10252" custid="76" shipcountry="Belgium" />

Note The results above are limited to five rows for brevity.

In the following example, the RAW mode is being applied to the results of a JOIN operation:

SELECT TOP(5) o.orderid, c.custid, c.companyname

FROM Sales.Orders AS o JOIN Sales.Customers AS c

ON o.custid=c.custid

FOR XML RAW;

This returns the following results. Note that the results are not hierarchical, but rather are flattened

per row:

<row orderid="10643" custid="1" companyname="Customer NRZBB" />

<row orderid="10692" custid="1" companyname="Customer NRZBB" />

<row orderid="10702" custid="1" companyname="Customer NRZBB" />

<row orderid="10835" custid="1" companyname="Customer NRZBB" />

<row orderid="10952" custid="1" companyname="Customer NRZBB" />

You will learn how to control the representation of the rows, add a root element, and use elements

instead of attributes later in this lesson.

 For More Information See Use "RAW Mode with FOR XML" in Books Online at
http://msdn.microsoft.com/en-us/library/ms175140(v=SQL.110).aspx.

http://msdn.microsoft.com/en-us/library/ms175140(v%3DSQL.110).aspx
http://msdn.microsoft.com/en-us/library/ms175140(v%3DSQL.110).aspx

Using FOR XML AUTO

Like the RAW mode, the AUTO mode converts tabular data to XML. By default, each row in the source is

returned as an element named for the row's source table or alias. No root element is created, and each

column value is represented as an attribute. The results are not well-formed.

The following query uses the AUTO mode’s default options for the tabular-to-XML conversion:

SELECT TOP(5) orderid, custid, shipcountry

FROM Sales.Orders

FOR XML AUTO;

The query returns:

<Sales.Orders orderid="10248" custid="85" shipcountry="France" />

<Sales.Orders orderid="10249" custid="79" shipcountry="Germany" />

<Sales.Orders orderid="10250" custid="34" shipcountry="Brazil" />

<Sales.Orders orderid="10251" custid="84" shipcountry="France" />

<Sales.Orders orderid="10252" custid="76" shipcountry="Belgium" />

Note The results above are limited to five rows to fit the page.

In this query, the AUTO mode is being applied to the results of a JOIN operation:

SELECT TOP(5) o.orderid, c.custid, c.companyname

FROM Sales.Orders AS o JOIN Sales.Customers AS c

ON o.custid=c.custid

FOR XML AUTO;

The query returns the following results. Note that the results represent a hierarchy of parent table to child

table. The order is determined by the order of the columns in the SELECT list.

<o orderid="10643">

<c custid="1" companyname="Customer NRZBB" />

</o>

<o orderid="10692">

<c custid="1" companyname="Customer NRZBB" />

</o>

<o orderid="10702">

<c custid="1" companyname="Customer NRZBB" />

</o>

<o orderid="10835">

<c custid="1" companyname="Customer NRZBB" />

</o>

<o orderid="10952">

<c custid="1" companyname="Customer NRZBB" />

</o>

You will learn how to control the representation of the rows, add a root element, and use elements

instead of attributes later in this lesson.

 For More Information See "Use AUTO Mode with FOR XML" in Books Online at
http://msdn.microsoft.com/en-us/library/ms188273(v=SQL.110).aspx.

http://msdn.microsoft.com/en-us/library/ms188273(v%3DSQL.110).aspx

Formatting XML with ROOT

To make the results of your FOR XML clause comply better with the requirements of well-formed XML,

you will want to add a single root element, under which all the other elements will be nested. To

accomplish this, use the ROOT('<root_name>') option, which is supported by FOR XML RAW, FOR XML

AUTO, and FOR XML PATH:

SELECT orderid, custid, shipcountry

FROM Sales.Orders

FOR XML RAW, ROOT('Orders');

This returns the following results, which show a newly created root element named Orders:

<Orders>

<row orderid="10248" custid="85" shipcountry="France" />

<row orderid="10249" custid="79" shipcountry="Germany" />

<row orderid="10250" custid="34" shipcountry="Brazil" />

<row orderid="10251" custid="84" shipcountry="France" />

<row orderid="10252" custid="76" shipcountry="Belgium" />

</Orders>

Formatting XML with ELEMENTS

You may have noticed that, by default, FOR XML RAW and FOR XML AUTO represent the values of each

column as an attribute (i.e., as a name-value pair) delimited with double quotation marks. Some

applications may require that elements be represented in element-centric form. To accomplish this, use

the ELEMENTS option, which is supported by FOR XML RAW, FOR XML AUTO, and FOR XML PATH:

SELECT orderid, custid, shipcountry

FROM Sales.Orders

FOR XML RAW, ELEMENTS, ROOT('Orders');

This returns the following results, which show each column's value represented as an element nested

within the element representing the row:

<Orders>

<row>

<orderid>10248</orderid>

<custid>85</custid>

<shipcountry>France</shipcountry>

</row>

<row>

<orderid>10249</orderid>

<custid>79</custid>

<shipcountry>Germany</shipcountry>

</row>

<row>

<orderid>10250</orderid>

<custid>34</custid>

<shipcountry>Brazil</shipcountry>

</row>

<row>

<orderid>10251</orderid>

<custid>84</custid>

<shipcountry>France</shipcountry>

</row>

<row>

<orderid>10252</orderid>

<custid>76</custid>

<shipcountry>Belgium</shipcountry>

</row>

</Orders>

Note To mix elements and attributes, you can use XPath, which is covered in the next

topic.

Mixing Elements and Attributes with XPath

SQL Server 2005 introduced support for XML Path Language (XPath), which is a query language for

retrieving nodes from an XML document. When used in a FOR XML clause, the PATH mode allows you to

mark up columns in the SELECT clause using special notation. When the query is processed, the PATH

mode interprets the markup and uses it to determine which columns should be represented as elements,

which should be represented as attributes, and even allows for arbitrary hierarchies to be created within

the XML stream.

Some of the possible notation options for the PATH mode include:

Column notation Description

@<alias>

Returns the value of the column as an attribute of the row element
named <alias>.

<alias>

Returns the value of the column as a child element of the row element
named <alias>.

<parent_alias>/<alias> Creates a child element of the row named <parent_alias> and nests a
child element with the value of the column named <alias>.

text() Returns the value of the column as a text node to the XML stream.

In the following example, the orderid column will be represented as an attribute of the row named

OrderId, and the custid and shipcountry columns will be represented as child elements in the resulting

XML stream:

SELECT orderid "@OrderID",

custid "CustID",

shipcountry "ShipCountry"

FROM Sales.Orders

FOR XML PATH('Order'), ELEMENTS, ROOT('Orders');

The results:

<Orders>

<Order OrderID="10248">

<CustID>85</CustID>

<ShipCountry>France</ShipCountry>

</Order>

<Order OrderID="10249">

<CustID>79</CustID>

<ShipCountry>Germany</ShipCountry>

</Order>

<Order OrderID="10252">

<CustID>76</CustID>

<ShipCountry>Belgium</ShipCountry>

</Order>

</Orders>

 For More Information See "Use PATH Mode with FOR XML" in Books Online at

http://msdn.microsoft.com/en-us/library/ms189885(v=SQL.110).aspx.

http://msdn.microsoft.com/en-us/library/ms189885(v%3DSQL.110).aspx

Handling NULL in XML Output

In a FOR XML operation, any results within a query that evaluate to NULL are removed from the resulting

XML by default. This is due to a silent default modifier, ABSENT

The following query includes customers that have placed no orders:

SELECT c.custid, c.companyname, o.orderid, o.orderdate

FROM Sales.Customers AS c LEFT OUTER JOIN Sales.Orders AS o ON c.custid =o.custid

FOR XML RAW, ROOT('CustOrders');

In the results, note the missing orderid and orderdate attributes for the last two customers:

<CustOrders>

<row custid="9" companyname="Customer RTXGC" orderid="11076" orderdate="2008-05-06" />

<row custid="7" companyname="Customer QXVLA" orderid="10265" orderdate="2006-07-25" />

<row custid="22" companyname="Customer DTDMN" />

<row custid="57" companyname="Customer WVAXS" />

</CustOrders>

This will also occur when using the ELEMENTS option:

SELECT c.custid, c.companyname, o.orderid, o.orderdate

FROM Sales.Customers AS c LEFT OUTER JOIN Sales.Orders AS o ON c.custid =o.custid

FOR XML RAW, ELEMENTS, ROOT('CustOrders');

The results:

<CustOrders>

<row>

<custid>9</custid>

<companyname>Customer RTXGC</companyname>

<orderid>11076</orderid>

<orderdate>2008-05-06</orderdate>

</row>

<row>

<custid>65</custid>

<companyname>Customer NYUHS</companyname>

<orderid>11077</orderid>

<orderdate>2008-05-06</orderdate>

</row>

<row>

<custid>22</custid>

<companyname>Customer DTDMN</companyname>

</row>

<row>

<custid>57</custid>

<companyname>Customer WVAXS</companyname>

</row>

</CustOrders>

To force FOR XML to include elements for values evaluating to NULL, add the XSINIL directive to the

ELEMENTS option:

SELECT c.custid, c.companyname, o.orderid, o.orderdate

FROM Sales.Customers AS c LEFT OUTER JOIN Sales.Orders AS o

ON c.custid =o.custid

FOR XML RAW, ELEMENTS XSINIL, ROOT('CustOrders');

The results will include not only elements marked with nil="true" but also a namespace declaration in the

root element that defines the source of the nil element:

<CustOrders xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<row>

<custid>85</custid>

<companyname>Customer ENQZT</companyname>

<orderid>10248</orderid>

<orderdate>2006-07-04</orderdate>

</row>

<row>

<custid>79</custid>

<companyname>Customer FAPSM</companyname>

<orderid>10249</orderid>

<orderdate>2006-07-05</orderdate>

</row>

<row>

<custid>22</custid>

<companyname>Customer DTDMN</companyname>

<orderid xsi:nil="true" />

<orderdate xsi:nil="true" />

</row>

<row>

<custid>57</custid>

<companyname>Customer WVAXS</companyname>

<orderid xsi:nil="true" />

<orderdate xsi:nil="true" />

</row>

</CustOrders>

Note A discussion of namespaces is beyond the scope of this topic.

 For More Information See "Generate Elements for NULL Values with the XSINIL
Parameter" in Books Online at http://msdn.microsoft.com/en-us/library

/ms178079(v=SQL.110).aspx.

http://www.w3.org/2001/XMLSchema-instance
http://msdn.microsoft.com/en-us/library

Demonstration: Converting Query Results to XML with FOR XML

Demonstration Steps

1. On the virtual machine, click Start, click All Programs, click Microsoft SQL Server 2012, and click

SQL Server Management Studio. In the Connect to Server window, type Proseware in the Server

name text box and click Connect. On the File menu, click Open and click Project/Solution.

Navigate to F:\10774A_Labs\10774A_AC_PRJ\10774A_AC_PRJ.ssmssln and click Open.

2. On the View menu, click Solution Explorer.

3. Open the 21 – Demonstration B.sql script file.

4. Follow the instructions contained within the comments of the script file.

Lesson 5

Querying XML Data

In this module, you have learned how to convert tabular query results into XML. Now you will see how to

query XML data in its native form, without conversion. To do so, you will learn the basics of XQuery, the

standards-based query language of XML.

Lesson Objectives

After completing this lesson, you will be able to:

• Describe the capabilities and usage of the XML data type.

• Describe the use of XQuery components in relational T-SQL queries.

• Write queries against XML data using the value method.

• Write queries against XML data using the query method.

Working with the XML Data Type

SQL Server 2005 introduced support for a native XML data type. The xml type provides a number of

capabilities, including xml-specific indexes and support for validation through XML Schemas. By storing

XML data natively in an xml data type and directly manipulating it, less effort can be spent converting it

back and forth between text and other relational data types. In order to accomplish this, you will learn

about some of the methods exposed by the xml data type:

xml Data Type Method Description

value

Returns a single value from an XQuery expression, cast back to a SQL data
type. Displayed as relational column in the query results.

query Returns untyped (not validated) XML from an XQuery expression as the xml
data type.

exist Checks for existence of a node within an XML document and returns a bit.

nodes Shreds XML to rowsets, converting XML data to tabular data.

modify Provides data manipulation support for inserting, updating, and deleting

XML elements.

 For More Information Additional reading on xml data type methods can be found in

Books Online at http://msdn.microsoft.com/en-us/library/ms190798(v=SQL.110).aspx.

http://msdn.microsoft.com/en-us/library/ms190798(v%3DSQL.110).aspx

Writing Queries Using XQuery

To retrieve data from within XML stored in a column or variable of the xml data type, you can use the

value and query methods provided. While the syntax for XQuery is very different from T-SQL, many of

the same core elements exist in both languages: You need to provide a description of what you want

retrieved (as in the T-SQL SELECT clause), the source of the XML data (similar to the T-SQL FROM clause),

and typically a predicate to filter the results (similar to the WHERE clause in T-SQL). However, there are

also some significant differences:

• The body of the XQuery expression is a string, delimited by single quotation marks and enclosed

within parentheses, as expressed in this pseudo-code:

SELECT <relational_column_name>,<xml_column_name>.value('<XQuery_expression>') AS

Result

FROM <table_source>;

• XQuery provides its own operator characters and its own navigational notation for traversing the

hierarchy contained within an XML document. For example, you use the string "eq" instead of an

equals sign "=" and forward slashes "/" to separate the names of elements, forming a navigation path.

The following snippet of XML illustrates this, showing the navigation from a root element Orders

down to a child element Order down to another child OrderDate:

/Orders/Order/OrderDate

• XQuery expressions require a prolog in the form of an XML namespace declaration. This might appear

as follows:

declare namespace ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume";

http://schemas.microsoft.com/sqlserver/2004/07/adventure-

• XQuery expressions can include control-of-flow components, string literal assignment, filtering, and

sorting through FLWOR (FOR, LET, ORDER BY, WHERE, RETURN) statements.

Note The use of FLWOR is beyond the scope of this course. For more information, see

course 10776A: Implementing a SQL Server 2012 Database. For more information on the

XQuery language and its elements, see Books Online at http://msdn.microsoft.com/en-us

/library/ms189075(v=SQL.110).aspx.

http://msdn.microsoft.com/en-us

Querying XML Data with the value Method

The value method of the xml data type allows you to return a scalar (single) value from XML data. The

value method takes two parameters:

1. An XQuery expression, wrapped in single quotes, including a namespace declaration in the prolog.

2. A SQL Server data type to which the results will be cast.

A simplified view of the syntax appears as follows:

SELECT <xmlcolumn>.value('<namespace declaration>;(<XQuery expression with single

result>','<data_type_to_cast_to') AS <alias>

The following query uses XQuery and the value method to return email addresses from the Resume

column of the AdventureWorks HumanResources.JobCandidate table. (The Resume column uses the xml

data type.)

1) SELECT JobCandidateID, Resume.value('

2) declare namespace ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume";

3) (/ns:Resume/ns:EMail)[1]','nvarchar(20)') AS [email]

4) FROM HumanResources.JobCandidate;

Let's examine the components of this query. Note that line numbers have been added for clarity. Also

note that the namespace declaration, which wraps from line 2 to line 3, is required to be on one line in

order to execute. Let’s look at the query line by line:

1. The SELECT clause invokes the value method of the Resume column and opens the query.

2. The namespace for the element names is declared. For the purposes of this example, the namespace

definition has been retrieved from the AdventureWorks database through querying system views. You

may need to ask your administrator for the proper Uniform Resource Identifier (URI) for your data.

The declaration defines the prefix "ns" for elements in the namespace, used later in the query.

http://schemas.microsoft.com/sqlserver/2004/07/adventure-

3. The XQuery expression, which navigates to the EMail element, appears in parentheses. It is followed

by an index number in square brackets [1]. This tells the query to retrieve the first email address it

finds at that path. The rest of the line sets nvarchar(2) as the data type to cast the results to, and

creates an alias for the column.

A snippet of the results, executed against the AdventureWorks2008R2 database, appear below:

JobCandidateID email

-------------- --------------------

1 Shai@Example.com

2 Max@Wingtiptoys.com

3 Krishna@TreyResearch

4 Stephen@example.com

mailto:Shai@Example.com
mailto:Max@Wingtiptoys.com
mailto:Stephen@example.com

Querying XML Data with the query Method

The query method of the xml data type returns results in the xml data type (unlike the value method)

from XML data. The query method takes a single parameter, an XQuery expression, wrapped in single

quotes, including a namespace declaration in the prolog.

A simplified view of the syntax appears as follows:

SELECT <xmlcolumn>.query('<namespace declaration>;<XQuery expression>');

The query method allows you to build string output in your XML results, as well as retrieve values from

within the XML data through a navigation path or FLWOR language.

The following example retrieves job candidates from the HumanResources.JobCandidate table. When a

candidate's resume includes work experience in the state of Washington, related location information is

returned. Note the use of the equality predicate [ns:Loc.State="WA "] to filter results:

select JobCandidateID, Resume.query('declare namespace

ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume";

/ns:Resume/ns:Employment/ns:Emp.Location/ns:Location[ns:Loc.State="WA "]') AS WA_Emps

FROM HumanResources.JobCandidate;

http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume

The results, as viewed in SSMS, look like this:

Note that the results from the Resume column are represented in the xml data type. Clicking one of the
result links yields the following:

<ns:Location xmlns:ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume">

<ns:Loc.CountryRegion>US </ns:Loc.CountryRegion>

<ns:Loc.State>WA </ns:Loc.State>

<ns:Loc.City>Renton</ns:Loc.City>

</ns:Location>

<ns:Location xmlns:ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume">

<ns:Loc.CountryRegion>US </ns:Loc.CountryRegion>

<ns:Loc.State>WA </ns:Loc.State>

<ns:Loc.City>Bellevue</ns:Loc.City>

</ns:Location>

<ns:Location xmlns:ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume">

<ns:Loc.CountryRegion>US </ns:Loc.CountryRegion>

<ns:Loc.State>WA </ns:Loc.State>

<ns:Loc.City>Kent</ns:Loc.City>

</ns:Location>

http://schemas.microsoft.com/sqlserver/2004/07/adventure-
http://schemas.microsoft.com/sqlserver/2004/07/adventure-
http://schemas.microsoft.com/sqlserver/2004/07/adventure-

Demonstration: Querying XML Data

Demonstration Steps

1. On the virtual machine, click Start, click All Programs, click Microsoft SQL Server 2012, and click

SQL Server Management Studio. In the Connect to Server window, type Proseware in the Server

name text box and click Connect. On the File menu, click Open and click Project/Solution.

Navigate to F:\10774A_Labs\10774A_AC_PRJ\10774A_AC_PRJ.ssmssln and click Open.

2. On the View menu, click Solution Explorer.

3. Open the 31 – Demonstration C.sql script file.

4. Follow the instructions contained within the comments of the script file.

Lab: Writing Specialized Queries

Lab Setup

For this lab, you will use the available virtual machine environment. Before you begin the lab, you must

complete the following steps:

1. On the host computer, click Start, point to Administrative Tools, and click Hyper-V Manager.

2. Maximize the Hyper-V Manager window.

3. If the virtual machine 10774A-MIA-DC1 is not started:

• In the Virtual Machines list, right-click 10774A-MIA-DC1 and click Start.

• Right-click 10774A-MIA-DC1 and click Connect.

• In the Virtual Machine Connection window, wait until the “Press CTRL+ALT+DELETE to log” on

message appears, and then close the Virtual Machine Connection window.

4. If the virtual machine 10774A-MIA-SQL1 is not started:

• In the Virtual Machines list, right-click 10774A-MIA-SQL1 and click Start.

• Right-click 10774A-MIA-SQL1 and click Connect.

• In the Virtual Machine Connection window, wait until the “Press CTRL+ALT+DELETE to log on”

message appears, and then close the Virtual Machine Connection window.

5. In Virtual Machine Connection window, click the Revert toolbar icon.

6. If you are prompted to confirm that you want to revert, click Revert. Wait for the revert action to

complete.

7. If you are not already logged on:

• In the Virtual Machine Connection window, click the Ctrl-Alt-Delete menu item on the

Action menu.

• Click Switch User, and then click Other User.

• Log on using the following credentials:

• User name: AdventureWorks\Administrator

• Password: Pa$$w0rd

8. In the Virtual Machine Connection window, click Full Screen Mode on the View menu.

9. If the Server Manager window appears, check the Do not show me this console at logon check

box and close the Server Manager window.

10. On the virtual machine, click Start, click All Programs, click Microsoft SQL Server 2012, and click

SQL Server Management Studio.

11. In the Connect to Server window, type Proseware in the Server name text box.

12. Click the Options button. Under Connection Properties, select <Browse server> in the Connect to

database list. Choose Yes when prompted for the connection to the database. Under User Databases,

select the TSQL2012 database.

13. Choose the authentication type depending on the type of Microsoft SQL version:

• For an on-premises Microsoft SQL Server instance, click the Login tab, select Windows

Authentication in the Authentication list, and click Connect.

• For Microsoft SQL Azure™, click the Login tab, select SQL Server Authentication in the

Authentication list, type your login name in the Login text box and the password in the

Password text box, and click Connect.

Lab Scenario

You are a business analyst for Adventure Works who will be writing reports using corporate databases

stored in SQL Server 2012. You have been provided with a set of business requirements for data and you

will write T-SQL queries to retrieve the specified data from the databases. Some of the data has been

specially indexed to support more sophisticated linguistic queries. Other portions of the data have been

stored in a native XML format. You will need to use the appropriate techniques for each type of data.

Important: When comparing your results with the provided sample outputs, the column ordering and

total number of affected rows should always match. However, remember that the order of the rows in

the output of a query without an ORDER BY clause is not guaranteed. Therefore, the order of the rows

in the sample outputs may be different than yours. Also, the answer outputs include abbreviated

results.

Exercise 1: Writing Queries That Use the Full-Text Functions CONTAINS
and FREETEXT

Scenario

The marketing department needs a report from the AdventureWorks2008R2 database regarding the

product descriptions. Because you need to apply efficient filtering for large character strings, you will use

the full-text functions based on the prepared full-text catalog and indexes.

The main tasks for this exercise are as follows:

1. Write a CONTAINS query to retrieve rows based on one or two words.

2. Compare the CONTAINS and the FREETEXT function.

X Task 1: Write a simple CONTAINS query

• Open the project file F:\10774A_Labs\10774A_AC_PRJ\10774A_AC_PRJ.ssmssln and the T-SQL script

51 - Lab Exercise 1.sql. To set your database context to that of the AdventureWorks2008R2 database,

highlight the statement USE AdventureWorks2008R2; and execute the highlighted code. After

executing this statement, the AdventureWorks2008R2 database should be selected in the Available

Databases box. In subsequent exercises, you will simply be instructed to ensure that you are

connected to the AdventureWorks2008R2 database.

• Check to see if the population of the full-text index is complete. Execute the provided T-SQL

statement and observe the column has_crawl_completed. The value should be 1 to indicate that the

population is complete.

SELECT

is_enabled, has_crawl_completed, crawl_type, crawl_start_date, crawl_end_date

FROM sys.fulltext_indexes

WHERE OBJECT_NAME(object_id) = N'Document';

• Write a SELECT statement against the Production.Document table and retrieve the Title and

DocumentSummary columns. Filter the result on the DocumentSummary column to contain the word

“Adventure”.

• Execute the written statement and compare the results that you got with the desired results shown in

the file 52 - Lab Exercise 1 - Task 1 Result.txt.

X Task 2: Write a CONTAINS query to search for two words

• Modify the query in task 1 to filter the DocumentSummary column to contain the words “Adventure

Works” and “pedals”.

• Execute the written statement and compare the results that you got with the desired results shown in

the file 53 - Lab Exercise 1 - Task 2 Result.txt.

X Task 3: Write queries to highlight the difference between the CONTAINS and
FREETEXT functions

• Write a SELECT statement that uses the CONTAINS function against the DocumentSummary table to

retrieve the Title and DocumentSummary columns. Filter the result on the DocumentSummary

column to contain the word “component”.

• Execute the written statement and compare the results that you got with the desired results shown in

the file 54 - Lab Exercise 1 - Task 3_1 Result.txt.

• Modify the query to use the FREETEXT function instead of the CONTAINS function.

• Execute the written statement and compare the results that you got with the desired results shown in

the file 55 - Lab Exercise 1 - Task 3_2 Result.txt.

• What is the difference between the functions CONTAINS and FREETEXT?

Results: After this exercise, you should be able to create basic queries using the full-text functions.

Exercise 2: Writing Queries That Use FOR XML to Return XML Results from
Relational Data

Scenario

The IT department would like to exchange the invoiced orders information with the external payment

provider using the XML structure. You will query the relational data and return it as XML.

The main tasks for this exercise are as follows:

1. Write a SELECT statement to retrieve information about the sales staff and return it as XML.

2. Write a SELECT statement to retrieve orders with order details for a specific year and return it as

an XML.

X Task 1: Write a basic SELECT statement and return the result as XML

• Open the project file F:\10774A_Labs\10774A_AC_PRJ\10774A_AC_PRJ.ssmssln and the T-SQL script

61 - Lab Exercise 2.sql. Ensure that you are connected to the AdventureWorks2008R2 database.

• Write a SELECT statement to retrieve the BusinessEntityID, SalesQuota, Bonus, CommissionPct,

SalesYTD, and SalesLastYearcustid columns from the Sales.SalesPerson table. Return the result as XML

using the AUTO option.

• Execute the written statement and compare the results that you got with the desired results shown in

the file 62 - Lab Exercise 2 - Task 1 Result.txt. You can display the XML structure if you click the

column in the query result pane.

X Task 2: Return the XML result based on the ELEMENTS option

• Modify the SELECT statement in task 1 to include each column as a separate element inside the XML.

• Execute the written statement and compare the results that you got with the recommended results

shown in the file 63 - Lab Exercise 2 - Task 2 Result.txt.

X Task 3: Add a root member and modify the element’s name

• Modify the SELECT statement in task 2 to include a root element named SalesPersons. Also modify it

so that each row has the XML element “Employee”.

• Execute the written statement and compare the results that you got with the recommended results

shown in the file 64 - Lab Exercise 2 - Task 3 Result.txt.

• Execute the T-SQL statement without the FOR XML output. Observe the missing values in the specific

columns. Are these columns present in the XML output?

X Task 4: Return the elements with the NULL inside the XML output

• Modify the SELECT statement in task 3 to include the information about the NULLs in the XML

output.

• Execute the written statement and compare the results that you got with the recommended results

shown in the file 65 - Lab Exercise 2 - Task 4 Result.txt.

X Task 5: Prepare a SELECT statement to exchange orders information

• Write a SELECT statement against the Sales.SalesOrderHeader and Sales.SalesOrderDetail tables to

retrieve the SalesOrderNumber, OrderDate, CustomerID, SalesOrderDetailID, ProductID, OrderQty,

and UnitPrice columns. Use the aliases OrderHeader and OrderDetails for needed tables. Filter the

query to include only the orders with the document date of 31 July 2008. Order the result by the

SalesOrderNumber column and return it as XML using the AUTO option. Add a root element called

Orders.

• Execute the written statement and compare the results that you got with the recommended results

shown in the file 66 - Lab Exercise 2 - Task 5_1 Result.txt.

• Change the order of the columns in the SELECT clause by specifying first the columns from the

Sales.SalesOrderDetails table and then the columns from the Sales.SalesOrderHeader table.

• Execute the written statement and compare the results that you got with the recommended results

shown in the file 67 - Lab Exercise 2 - Task 5_2 Result.txt.

• Is the order of the columns in the SELECT clause important when returning the result using

FOR XML AUTO?

Results: After this exercise, you should know how to return the relational data as an XML.

Exercise 3: Writing Queries That Use XQuery to Return XML Data

Scenario

You have learned how to return the relational data as XML data. Now you will have to learn how to query

the XML data to efficiently read the elements inside the xml data type. The HR department has stored the

resume information of each job candidate as an xml data type. You will have to retrieve different elements

and values from the Resume column inside the HumanResources.JobCandidate table.

The main tasks for this exercise are as follows:

1. Learn how to navigate the XML structure on a sample provided by the IT department.

2. Write a SELECT statement against the HumanResources.JobCandidate table to retrieve elements and

values inside the XML data.

X Task 1: Write simple SELECT statements using XQuery

• Open the project file F:\10774A_Labs\10774A_AC_PRJ\10774A_AC_PRJ.ssmssln and the T-SQL script

71 - Lab Exercise 3.sql. Ensure that you are connected to the AdventureWorks2008R2 database.

• The IT department has provided you with sample code that stores a simple XML structure inside the

variable @x. Write a SELECT statement against the XML stored in the variable @x to retrieve columns

that contain:

• The complete sequence. Use the alias completesequence.

• The customer name element (/root/customer/name). Use the alias elementcustname.

• The value of the customer name element (/root/customer/name). Use the alias

elementcustnamevalue.

• A new element with an XML based on name and age element. Use the alias newelement.

<result>Customer name is Albert and he is 32 years old.</result>

• Highlight the provided T-SQL code together with the written query and execute them.

• Observe and compare the results that you got with the recommended results shown in the file

72 - Lab Exercise 3 - Task 1 Result.txt.

X Task 2: Write a SELECT statement to retrieve the first name XML element

• Write a SELECT statement against the HumanResources.JobCandidate table and return the columns:

• JobCandidateID

• Resume

• A calculated column in which XQuery is used to retrieve only the element

ns:Resume/ns:Name/ns:Name.First from the Resume column. Use the alias XMLFirstName.

Declare the namespace ns as http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume.

• Execute the written statement and compare the results that you got with the recommended results

shown in the file 73 - Lab Exercise 3 - Task 2 Result.txt. Notice that the data type of the calculated

column is xml.

http://schemas.microsoft.com/sqlserver/2004/07/adventure-
http://schemas.microsoft.com/sqlserver/2004/07/adventure-

X Task 3: Modify a SELECT statement to retrieve the value of the first name XML
element

• Modify the T-SQL statement in task 2 so that the calculated column returns the value of the element

ns:Resume/ns:Name/ns:Name.First as a data type NVARCHAR(50).

• Execute the written statement and compare the results that you got with the recommended results

shown in the file 74 - Lab Exercise 3 - Task 3 Result.txt.

Results: After this exercise, you should have a basic understanding of how to use XQuery.

Module Review

Review Questions

1. When would you use CONTAINS as opposed to FREETEXT when using full-text search?

2. Which FOR XML option allows you to specify which columns are represented as elements and which

columns are represented as attributes?

